
OSP Physics Style September 6, 2006 2:15 p.m. manual page i

Open Source Physics: 1

A User’s Guide with Examples
(Draft)

Wolfgang Christian

Includes

Physics Curricular Material by Mario Belloni

Tracker Video Analysis and OSP XML by Doug Brown

BQ Database by Anne Cox and William Junkin

Easy Java Simulations by Francisco Esquembre

September 6, 2006

1Open Source Physics is supported in part by National Science Foundation grants DUE-
0126439 and DUE-0442481.



OSP Physics Style September 6, 2006 2:15 p.m. manual page ii

ii



OSP Physics Style September 6, 2006 2:15 p.m. manual page 366

C H A P T E R

17 Easy Java Simulations

c©2005 by Francisco Esquembre, July 2005

The Open Source Physics project includes Easy Java Simulations, a high-level
authoring tool that can be used both by expert programmers as a fast-prototyping
utility, and by novices as a simple tool that will help them create their first simu-
lations. This Chapter provides an overview of this application.

17.1 INTRODUCTION

The OSP library provides a complete and articulated set of Java classes and util-
ities for programmers who want to create their own computational physics appli-
cations in Java. For these users, the library helps speed up the creation process.

However, OSP is just too powerful to reduce its potential use only to program-
mers. There are a great number of creative teachers (and students) who may not
be fluent enough in Java to use the libraries as provided, but who could, if given
the chance, develop effective and useful physics simulations.

For this reason, the OSP project aimed, from the very beginning, to find a way
for non-programmers to access the concepts and to use the products of the OSP
library. Easy Java Simulations is the answer to this goal.

Easy Java Simulations (Ejs for short) is a software authoring tool created in
Java which sits on top of OSP libraries. It provides a simplified entry point for
those who want to create Java applications or applets that simulate physical phe-
nomena.

If you are an experienced Java programmer already or are on the way of be-
coming one, you may wonder why you need such an authoring tool when you can
program directly? Even though it’s true that direct programming gives you full
control, before you decide to skip this Chapter completely, consider that you may
want to learn more about a tool that can help you to:

• Quickly develop a prototype of an application in order to test an idea or
algorithm.

• Boost the creation of sophisticated user interfaces with minimal effort.

• Create simulations whose structure and algorithms other people (especially
non-programmers) can easily inspect and understand.

• Invite your students or colleagues (who may be new to Java) to create their
own simulations.

366



OSP Physics Style September 6, 2006 2:15 p.m. manual page 367

17.1 Introduction 367

• Automate production tasks such as preparing your simulations to be dis-
tributed using Web pages or Java Web Start technology.

This Chapter provides a general description of Easy Java Simulationsand does
not explain all of Ejs’ features and possibilities, from the installation of the soft-
ware to the Web distribution of the generated simulations. A detailed manual is,
however, on the companion CD an on the Ejs web site. Instead, this Chapter is a
short survey that describes how the tool works and how it simplifies the creation
of professional OSP simulations.

We will illustrate how to use Ejs by working with one of the most famous
Physics examples of all time, the simple pendulum. To get acquainted with Ejs’
main features, we will begin by loading, inspecting, and running an existing ba-
sic simulation of this physical system. We will then extend the model to include
damping and forcing and to improve the visualization of the phenomenon by in-
cluding phase-space and energy graphs. Figure 17.1 shows the user interface of
the simulation we will obtain once we have finished working with it.

FIGURE 17.1 A simulation of a simple pendulum created with Easy Java Simulations.
A damping term was introduced approximately at time t = 10 seconds.



OSP Physics Style September 6, 2006 2:15 p.m. manual page 368

368 Chapter 17 Easy Java Simulations

17.2 THE MODEL–VIEW–CONTROL PARADIGM MADE SIMPLER

We have mentioned the model–view–control (MVC) paradigm earlier in this
guide (see Section 1.2). This was introduced as a way of structuring the different
parts of a computer program and has proved to be successful in creating versatile
applications in a clean, well-defined, and relatively simple, way.

Easy Java Simulations uses this same paradigm. It structures a simulation in
two main parts: the model and the view. The model is the collection of variables
that define the different possible states of the system under study, together with the
algorithms that describe how these variables change in time or how they respond
to user interaction. The view is the generic name that Ejs adopts for both the
visualization of the phenomenon and the user interface of the application.

In essence, the Ejs view combines the control and view of the MVC paradigm.
This simplifies things for beginners because in modern computer simulations the
control is achieved through interaction of the user with the application’s graphical
user interface.

Because our simulations have mainly a pedagogical purpose, we will add to
the model and view a textual (multimedia) part that is designed to contain a short
introduction to the simulation or operating instructions for the user. Thus, an Ejs
simulation consists of three main parts: the introduction, the model and the view.
Figure 17.2 shows the interface of Easy Java Simulations (to which we have added
some notes), which reflects this structure.

You are invited to run Ejs while you read this chapter. Although you can find
detailed instructions on installing and running it in the manual included in
the companion CD, here are some quick guidelines (for those who don’t like
reading manuals!). To install and run Ejs, follow the next steps:

Install Java 2 JDK. Easy Java Simulations is a Java program that compiles
Java programs, hence it requires that you install Java Development Kit
(Java 2 JDK) in your computer. The recommended version at the mo-
ment of this writing is 1.5.0 04.

Copy Ejs to your hard disk. Installing Ejs requires only copying the Ejs
directory to your hard-disk. This directory is usually distributed as
a zip (compressed) file. Just uncompress this file to any suitable di-
rectory. (In Unix-like systems, the directory may be uncompressed as
read-only. In this case, please enable write permissions for the whole
Ejs directory.)

Run Ejs’ console. Easy Java Simulations is now installed. The distribution
includes an EjsConsole.jar file that runs a console that lets you do the
final configuration for the installation and to run Ejs itself. Run this file
by either double-clicking on it (if your system allows you to run it this
way) or typing the command:

java -jar EjsConsole.jar

at a system terminal window. You should get the window shown in
Figure 17.3.

Tell Ejs where you installed the JDK. (This is only required in Windows



OSP Physics Style September 6, 2006 2:15 p.m. manual page 369

17.2 The Model–View–Control Paradigm Made Simpler 369

FIGURE 17.2 Easy Java Simulations user interface (with annotations).

and Linux.) Because you may have installed Java 2 JDK in any direc-
tory, you will need to enter this directory in the Java JDK field of the
console.

Run Ejs. Just click on the Launch Easy Java Simulations button of
the console.

That’s it! You should get the interface displayed in Figure 17.2. Again, you
will find more detailed instructions in the CD and also in Ejs’ home page
http://fem.um.es/Ejs. 1

As you can see in Figure 17.2, the interface of Ejs is rather basic. This was
a deliberate design decision. We wanted to make clear from the very beginning
that Easy Java Simulations is simple. Hence, we avoided providing a large and
overwhelming number of icons and menu entries in the Ejs interface. Despite its
simplicity, however, the tool has everything that it needs to build controls, models,
and views.
1For operating system purists, Ejs’ installation includes three script files that launch Ejs in the different
platforms: Ejs.bat for Windows, Ejs.macosx for Mac OS X, and Ejs.linux for Linux. Before running
the file corresponding to your operating system, you may need to slightly edit the script to correctly
set the JAVAROOT variable (which is defined in the first lines of the script) that points to the directory
where you installed the Java JDK.



OSP Physics Style September 6, 2006 2:15 p.m. manual page 370

370 Chapter 17 Easy Java Simulations

FIGURE 17.3 The Ejs’ console that will help you run Easy Java Simulations.

We start exploring the interface by looking at the set of icons on the right hand
side taskbar of Figure 17.2. The taskbar provides an icon for each of the main
functionalities of Ejs. We will explain the purpose of some of these icons in this
chapter, but their meaning and use should be rather natural.

You will also notice in Figure 17.2 that there is a blank area at the lower part
of the window with a header that reads “You will receive output messages here”.
This is a message area that Ejs uses to display information about the results of the
actions we ask it to take.

Finally, the most important part of the interface is the central area of the inter-
face (labeled the Workpanel in the figure), and the three radio buttons on top on
it, Introduction, Model and View. These radio buttons are used to display the
introduction, the model and the view in the workpanel.

17.3 INSPECTING AN EXISTING SIMULATION

We can better understand the role of the different parts of a simulation, and the
utility of the different panels of Ejs, by loading and inspecting an existing sim-
ulation. We choose for this a basic implementation of the simple pendulum that
we created for your perusal and that is included in the distribution of Ejs in the
companion CD.

If you click on the Open icon of the taskbar, , a file dialog box will open



OSP Physics Style September 6, 2006 2:15 p.m. manual page 371

17.3 Inspecting an existing simulation 371

from which you can load a simulation file. See Figure 17.4.

FIGURE 17.4 File dialog box used to load an existing simulation file.

The file dialog box first displays the contents of Ejs’ working directory called
Simulations. From there you can access any directory or file in the standard way.
Open the directory called ospguide and select from it the file called Pendu-
lumBasic.xml. Click the Open button and Ejs will load a basic version of the
simulation of a simple pendulum.

The interface of Ejs will change noticeably. It will load the different parts of the
simulation file in the corresponding panels, allowing us to see how the simulation
has been designed. It will change its title to include the name of the simulation
file, and, finally, it will also display a message, in the message area, reporting that
the file has been loaded.

Two new windows will also appear. You can see them in Figure 17.5. They
correspond to the view of the simulation, which we will describe a bit later. 2 For
the moment, however, we will concentrate on the interface of Ejs itself.

What we see in this interface depends on which part of the simulation was
visible when we loaded the file. Because we are interested in learning how to
use Ejs to specify a real simulation, we will inspect the different parts of the
simulation in turn by browsing the different panels of Ejs.

The Introduction

The first panel is the introduction of the simulation, shown in Figure 17.6, which
consists of a html page with a short introduction to the problem. This part of the
interface of Ejs provides a simple editor that can be used to both visualize and edit
standard html pages. Right now, we see the editor in its read-only mode. We will
learn in Section 17.5 how to set it to edit mode and actually change its contents.

2To be more precise, these two windows are, as their titles state, Ejs windows. That is, windows that
Ejs displays to help the author configure the view. Hence, they are really mock-ups of what the real



OSP Physics Style September 6, 2006 2:15 p.m. manual page 372

372 Chapter 17 Easy Java Simulations

FIGURE 17.5 The two windows for the view of the simulation.

FIGURE 17.6 The introduction panel for the simulation of a simple pendulum.

The Model

The second part of the simulation, the model, is more interesting. As you may
expect, this is the part where all the physics goes. The physical model of a simple
pendulum without friction and without an external driving force is contained in

view will look like, but they are not operative. Notice also that this view is different from the view of
the final simulation we will obtain at the end of this chapter, the one displayed in Figure 17.1.



OSP Physics Style September 6, 2006 2:15 p.m. manual page 373

17.3 Inspecting an existing simulation 373

the differential equation:

d2θ

dt2
= −g

l
sin(θ), (17.1)

where the variable θ corresponds to the angle between the pendulum’s arm from
the vertical, g is the acceleration due to gravity, and l is the length of the pendu-
lum.

This second-order, non-linear, ordinary differential equation (ODE) must be
solved numerically because there is simply no way to express its solution in terms
of elementary functions. 3 To this end, we need to express the second-order differ-
ential equation as an equivalent system of two first-order ODEs, introducing the
auxiliary variable ω, the angular velocity:

dθ

dt
= ω (17.2)

dω

dt
= −g

l
sin(θ). (17.3)

Solving this system of ODEs for the given parameters will give us the evolution
of the angular position (and velocity) of the system in time.

The second part of Easy Java Simulations, the model, offers us a set of
five subpanels that can be used to accomplish the tasks needed to solve this
problem. These five subpanels are: Variables, Initialization, Evolution,
Constraints, and Custom. In the Ejs pendulum example, select the Model radio
button in order to view the model panel. We now consider the five subpanels one
after the other.

Declaring the Variables
In the context of a computer program or simulation, the state of a physical system
is determined by the values of a set of variables. Accordingly, to begin modeling
our simple pendulum, we must provide Ejs with the set of variables that defines
the state of the physical system. This is done by editing a simple table of vari-
ables in the Variables subpanel of the model part of the interface of Ejs. See
Figure 17.7.

In this table we have declared all the variables involved in the differential equa-
tions as well as other parameters, such as the mass, m, (which we don’t need for
the moment, but that we will need later on) and the time interval, dt, at which we
want to obtain information from the system. Finally, you will notice that we have
also declared the variables x, y, vx, and vy, that hold the position and the velocity
of the pendulum’s bob. They will serve to configure the view to display a realistic
visualization of the pendulum.

3To be more precise, the case we consider here in the absence of friction and of any other forces can
be explicitly solved using elliptic functions. However, we adopt the numerical approach right from the
start in order to be able to deal later with the more general case.



OSP Physics Style September 6, 2006 2:15 p.m. manual page 374

374 Chapter 17 Easy Java Simulations

FIGURE 17.7 Table of variables that describe the state of a simple pendulum.

If you want information about the role of a particular variable, you can select
it in the table and the comment field at the bottom of the page will display a short
description of that variable.

Initializing the Model
The system must be initialized to a valid state before letting the time run. There
are two basic ways of initializing variables in Ejs. The first one is using the corre-
sponding cells of the column Value in the table of variables. Just type a constant
value, or a simple expression, and it will be assigned to the variable at start-up.
This is the option we have used for this simulation.

A second possibility, which is required if your program needs to do some more
complex computations to initialize the system, is to use the Initialization
subpanel provided by Ejs. In this subpanel you can type the Java code for the
algorithm that will compute the correct values for the variables that require these
extra computations. Ejs helps to keep this process simple, because you just need
to write the Java sentences that contain the algorithm for your computations, and
Ejs will automatically wrap these algorithms into a Java method and will take care
of calling it at start-up or whenever you reset the simulation.

Because the system has been completely initialized in the table of variables,
the initialization panel remains empty. We’ll have the opportunity to show how to
write such a page of Java code when we cover constraints.



OSP Physics Style September 6, 2006 2:15 p.m. manual page 375

17.3 Inspecting an existing simulation 375

The Evolution of the Model
Specifying the evolution of the model consists of providing the algorithms that
describe how the state of the system changes in time. That is, what happens to
the values of the variables of the system when it evolves in time. In our case, this
corresponds to solving numerically the differential equations of the model.

Ejs offers two possibilities for this. The first one is a plain editor for Java code
where the author can write directly the numerical algorithm required. You would
typically use this option if your main interest is simply numerical algorithms.
However, because it is a common situation that the evolution of a system is speci-
fied by a system of ODEs, and writing the code to solve this type of problem with
accuracy can be tedious (if not difficult), Ejs also offers a dedicated built-in edi-
tor. This editor allows us to easily enter the system of ODEs, and it automatically
generates the Java code (based on OSP numeric classes) corresponding to some
of the most popular numerical algorithms to solve the equations.

This second possibility is the one we chose for our system. If you inspect the
Evolution subpanel of Ejs, you will see that it contains our system of ODEs in
this specialized editor, as shown in Figure 17.8.

FIGURE 17.8 Equation editor for our simulation with the pendulum’s system of ODEs.

One advantage of this editor is that it displays the system of ODEs in a very
familiar way, one that your students can easily recognize and that is easy to under-
stand and modify. The second advantage is that the editor takes care of the worst
part of solving the equation: coding the algorithm. Solving differential equations
numerically is a sophisticated task, but Ejs (with the help of OSP classes) has
automated it in a very convenient way.



OSP Physics Style September 6, 2006 2:15 p.m. manual page 376

376 Chapter 17 Easy Java Simulations

You will notice in Figure 17.8 that we have chosen t to be the independent
variable in the model and dt to be the increment for it in each evolution step. This
means that the evolution page should solve the equation to move from the current
instant of time at t, to the next instant of time at t+dt.

We have chosen the standard 4th-order Runge-Kutta algorithm, as the Solver
field immediately below the equations indicates. You will also notice that there are
two extra fields, one called Tolerance (that is used only for adaptive algorithms),
and one called Events. This last field is used to define and handle state-events,
such as collisions, that may occur in the life of the differential equation. (Events
are described in detail in the manual on the CD.) In our case, the simple pendulum
model includes no events.

All together, this page describes, using the editor for ODEs, what will happen
as time passes: the differential equations will be solved numerically for an incre-
ment of dt of the independent variable. The controls you see in the left-hand side
of Figure 17.8 are used to tell Ejs how often the evolution should take place when
the simulation runs. As the figure shows, we have instructed Ejs to run the evolu-
tion 20 times, or frames, per second. This, together with the value of 0.05 that we
used for dt, results in a simulation which runs (approximately) in real time.

Finally, there is a checkbox labeled Autoplay. This instructs Ejs to run the
evolution as soon as the program runs. We left it unchecked because we want to
offer the user the possibility of changing the position of the pendulum and then to
click on a button that will start the animation.

Constraints Among Variables
The fourth subpanel of the model is called Constraints. This panel is used to
write Java code that establishes fixed relationships among variables. Consider,
again, the pendulum example as shown in Figure 17.9.

The evolution of our model solves the ODEs in terms of the angular magni-
tudes, theta and omega. However, we are interested in displaying on the screen
the actual position of the pendulum and its velocity vector, and, for this, we need
the corresponding cartesian coordinates of both position and velocity. These can
be easily derived from the angular magnitudes using the formulas:

x = l sin(θ) (17.4)

y = −l cos(θ) (17.5)

vx = ω l cos(θ) (17.6)

vy = ω l sin(θ). (17.7)

This is what we call “fixed relationships among variables.” This means that,
once we know the values of l, θ, and ω, the other variables can be easily obtained
using the expressions above. Our constraints consist of translating these expres-
sions into Java so that Ejs can use them whenever it is needed.



OSP Physics Style September 6, 2006 2:15 p.m. manual page 377

17.3 Inspecting an existing simulation 377

FIGURE 17.9 Constraints pages that compute the cartesian magnitudes of a simple pen-
dulum.

Notice that the page contains only the Java code for our expressions. Ejs will
take care of wrapping this code into a Java method and automatically calling this
method whenever it is necessary. This simplifies our programming task.

Now comes a subtle point. One of the questions most frequently asked by
new users of Ejs: “Why don’t we write these equations into the evolution instead
of in the constraints?”. The reason is that this relationship among variables must
always hold, even if the evolution is not running. It could very well happen that the
simulation is paused and the user interacts with the simulation to change the angle
theta (or omega, or l). If we write the code to compute the cartesian magnitudes
in the evolution, the values for the variables x, y, vx, and vy will not be properly
updated, because the evolution is only evaluated when the simulation is playing.

Constraint pages, on the other hand, are always automatically executed after
the initialization (at the beginning of the simulation), after every step of the evo-
lution (when the simulation is playing), and each time the user interacts with the
simulation. Therefore, any relationship among variables that we code in here will
always be verified.

You could argue here that, since constraints are evaluated also at start-up,
there was no reason to initialize the variables x, y, vx, and vy in the table of
variables since the evaluation of the constraints will assign them the correct
values at start-up. You would be almost right. There is still a reason for doing
what we did, though.
Ejs doesn’t evaluate constraints itself (the generated simulation does), but it
evaluates expressions in the Value column of the table of variables. Hence,
we wrote the initial expressions for these variables so that the pendulum’s



OSP Physics Style September 6, 2006 2:15 p.m. manual page 378

378 Chapter 17 Easy Java Simulations

bob appears at the right place in the mock-up of the view displayed. But it is
true that, in general, constraints can also be used to initialize variables.

Custom Pages of Code
The final subpanel of the model is called Custom. This panel can be used by the
author of the simulation to define his or her own Java methods. Different from the
rest of panels of the model, which play a well-defined role in the structure of the
simulation, methods created in this panel must be explicitly used by the author in
any of the other parts of the simulation. Again, in our example, this panel is empty
and is not displayed.

Although Ejs is designed to make programming as simple as possible and
includes the typical tools an author may need, it also opens a way for pro-
grammers to use their own Java libraries. The custom panel of the model
offers a simple mechanism to add external Java archives of compiled classes,
packed in jar or zip form, to your simulation. The procedure is explained in
detail in the manual.

The Model as a Whole
Our description of the model is ready, and we can look at it as one unit to describe
the integral behavior of all the subpanels of the model.

To start the simulation, Ejs declares the variables and initializes them, using
both the initial values specified in the table of variables and whatever code the
user may have written in the initialization subpanel. At this moment, Ejs also
executes whatever code the user may have written in the constraint pages. This is
so that all dependencies between variables are properly evaluated. The system is
now correctly initialized.

When the simulation plays, Ejs executes the code provided by the evolution
subpanel and, immediately after, the possible constraints (for the same reason as
above). Once this is done, the system will be ready for a new step of the evolution,
which it will repeat at the prescribed speed (number of frames per second).

As mentioned already, note that methods in the custom subpanel are not auto-
matically included in this process.

This simple mechanism provides a basic, but very effective, structure for
novices (and experts!) to build their simulations. The author just fills in the
subpanels of the model, usually from left to right, and Ejs handles the pieces,
automatically taking care of all technical issues required (such as multitasking
and synchronization).

The View

We now turn our attention to the view of the simulation. Recall that two new
windows appeared when we loaded the simulation (see Figure 17.5). To learn how
this view has been constructed, we can inspect the View panel of Ejs. Figure 17.10
displays this panel, where two frames, each with several icons, are shown. The
frame on the right-hand side displays the set of graphical elements that Ejs offers



OSP Physics Style September 6, 2006 2:15 p.m. manual page 379

17.3 Inspecting an existing simulation 379

to authors for the creation of a view, grouped by functionality. The frame on the
left-hand side shows the actual elements that have been used for this particular
simulation.

FIGURE 17.10 Tree of elements for the simulation (left) and set of graphical elements
(right) of Ejs.

The view panel of Ejs can be considered as an advanced drawing tool which
specializes in the visualization of scientific phenomena and its data and user in-
teraction. Obviously, to completely master the creation of views, an author needs
to become familiar with all the graphical elements offered and what they can do.
(A description of all possible view elements is out of the scope of this chapter, but
a complete reference can be found on the companion CD.)

Creating a view with Easy Java Simulations takes two steps. The first step is
to build a tree-like diagram of the objects (elements) that will make up the user
interface. Each element is designed for a given graphical or interactivity task, and
our job is to select the elements that we need and combine them appropriately to
build our view. Selecting and adding new elements to a view is done in a simple
“click-and-use” way which we will illustrate in Section 17.5.

Some elements are of a special family called containers, which can be used to
group other elements, thus forming the tree-like structure of the elements shown
in the figure.

The second step, less evident but also simple, consists of customizing the se-
lected view elements by editing their so-called properties. Properties are internal
fields of an element that can be changed to make the element look and behave in
a particular way. The key point is that properties can be given constant values (for



OSP Physics Style September 6, 2006 2:15 p.m. manual page 380

380 Chapter 17 Easy Java Simulations

instance to customize fonts and colors), but they can also be linked to variables of
the model (typically for positions, sizes and labels with numerical displays).

Because linking is a two-way mechanism, this second possibility is what re-
ally turns the view into a dynamic, interactive visualization of the physical phe-
nomenon. Hence, once an element property is linked to a model variable, any
change in the variable (due for instance to the evolution of the model) is auto-
matically reported to the view element which changes its graphical aspect accord-
ingly. But, also, if the user interacts with any view element to modify any of its
properties (typically doing a gesture with the mouse or keyboard), the change is
automatically reported back to the model variable, therefore changing the state of
the system.

This basic mechanism is a very simple and effective way to design interactive
user interfaces. Let us see an example of how it works in practice. Select the panel
for the view and right-click on the element called Bob of the tree of elements of
our simulation. This element corresponds to the circle displayed as the bob of the
pendulum. The popup menu shown in Figure 17.11 will appear.

FIGURE 17.11 Popup menu for the element Bob of the view.

Select the option Properties from this menu (the one highlighted in the fig-
ure) and a new window will appear with the table of properties for this element. 4

All that is required is to edit this table according to our needs. Figure 17.12 reflects
the properties we defined for this particular element.

This table of properties illustrates very well all the possibilities offered by el-
ement properties. In the first place, you can see in the figure that some properties
are given constant values. For instance, those which specify the color, drawing
style, and size of the element (which will be displayed as a cyan-colored ellipse
of size (0.2,0.2) units). You can also see that the element is enabled, that is, that it
will respond to user interaction.

Secondly, you will observe that other properties of the element are given the
value of model variables. In particular, the properties X and Y, which correspond to

4Double-clicking on the element’s node in the tree is a shortcut for this option.



OSP Physics Style September 6, 2006 2:15 p.m. manual page 381

17.3 Inspecting an existing simulation 381

the center of the circle in its parent drawing panel, have been linked to the model
variables x and y by the simple fact of typing their names in the corresponding
property field. This connection is the magic. Automatically, the circle will move
according to the successive values of the model variables x and y when the sim-
ulation runs. Also, if the user drags the element Bob with the mouse, the model
variables x and y will be accordingly changed.

As described above, every time the user interacts with the simulation’s view,
Ejs will also automatically execute the constraints of the model. This ensures that
any change that the interaction caused to variables linked to properties is correctly
propagated to other variables which may depend on those.

Finally, there is a third type of property that needs to be taken care of for this
example to work properly. Recall that the model computes primarily the values
of the angular magnitudes, and that we wrote constraints to make sure that the
cartesian magnitudes (which includes x and y) were readily computed to match
those. This means that if we interact with the pendulum bob to change the values
of x and y, the change will be overwritten by the constraints unless the change
does affect the angular variables. This can be easily taken care of by means of the
(somewhat special) action properties of the element. These correspond to pieces
of Java code that the computer will evaluate whenever the prescribed interaction
takes place.

In our case, we need to edit the action property called On Drag, which is eval-
uated every time we drag the element on the screen. We have set this property to
execute the following sequence of sentences: 5

theta = Math.atan2 (x,-y);
l = Math.sqrt (x*x + y*y);
omega = 0.0;

5Unlike other properties, action properties can span more than one line. When this happens, the prop-
erty field changes its background color slightly. To better display this code, we can click on the first

button to its right, , and an editor window will display it more clearly.

FIGURE 17.12 Table of properties for the element Bob of the view.



OSP Physics Style September 6, 2006 2:15 p.m. manual page 382

382 Chapter 17 Easy Java Simulations

The first two statements use the (new) values of the x and y variables to com-
pute the new length of the pendulum and its angular position. We have added a
third sentence that sets the angular velocity to zero, because we want the motion
to re-start from rest. All together, these sentences help set up a new state for the
model of the system.

The three types of customization we did to the properties of this view element
illustrate how Easy Java Simulations combines the creation of the control and the
visualization tasks of a simulation in one single process (the view). By using either
constants, model variables, and Java expressions and sentences, we can configure
a user interface that is used simultaneously to display data, to provide input, and
to execute control actions on the simulation.

You can inspect the properties of other elements of this view to become famil-
iar with the different types of view elements offered by Ejs and their properties.
Of particular interest are the elements called Angle and Velocity, which cor-
respond to time plots of these magnitudes. For each element, you can click on

, the first button to the right of each property box, to bring up an editor for
that property. For example, the Style property editor will allow you to select the
shape of the element, and the Fill Color property editor will allow you to select
the color from a palette.

17.4 RUNNING A SIMULATION

Once we have inspected the different parts of the simulation, we are ready to
run it. Here goes a warning that may arrive too late if you are running Ejs while
reading these pages: don’t try to run the simulation by clicking on the buttons of
the windows in Figure 17.5! Recall that these were just “Ejs windows”. Hence,
they are not part of the real simulation, but just a mock-up of what the real view
will look like. Their purpose is to help the author design the view, but they are not
operative.

To actually run the simulation, you need to click on the Run icon of Ejs’ toolbar,
. When you do this, Easy Java Simulations collects all the information provided

in its panels and subpanels, and constructs a complete, independent simulation out
of it, taking care of all the required technical subtleties. This includes generating
the complete Java source code for the simulation, compiling it, and packing it into
a single jar file. Finally, it also runs this file, which will initialize the model and
display the simulation’s view in the computer screen.

This view is now fully interactive. You can drag the pendulum to any desired
position, change any of its parameters, and then click the Play button. The pen-
dulum will oscillate as the model solves the underlying differential equations.
The view will display both the pendulum’s oscillations and the time plot of the
position and (optionally) the velocity. See Figure 17.13.

Simulations created with Easy Java Simulations are independent of it once
generated. This means that final users don’t need to install Ejs to run the simu-
lations. They simply double-click the jar file. Moreover, when you have success-



OSP Physics Style September 6, 2006 2:15 p.m. manual page 383

17.4 Running a Simulation 383

FIGURE 17.13 The simple pendulum displaying oscillations with a big amplitude. The
largest plot corresponds to the angular velocity.

fully run a simulation once, you’ll find everything you need to run and distribute
the simulation in the Simulations directory. We now briefly discuss the different
ways to run a simulation created with Easy Java Simulations, together with some
remarks about its distribution.

Running the Simulation as an Application

After running the simulation, you will find in the Simulations directory a jar file
with the same name as the simulation file we first loaded (if only with its first
letter in lowercase, a style custom in Java programming). Recall that the name
of this file was PendulumBasic.xml. Hence, you will find there a jar file called
pendulumBasic.jar.

This is a self-running jar file. Hence, if your operating system is properly con-
figured, you will be able to run the simulation by double-clicking on the jar file
icon. (Windows and Mac OS X are usually automatically configured for this if the
Java runtime environment is installed.) If double-clicking won’t work, then you
can still use the launch file called PendulumBasic.bat. This has been generated
by Ejs specifically for your operating system and can be executed like any other
batch (Windows) or shell script (Unix-like systems) on your operating system.

This jar and launch file will work correctly assuming that you have the Java
runtime environment (JRE) installed in your system and that you run them from
within the Simulations directory. If you want to move your simulation to a dif-
ferent directory or computer, read the distribution notes below.

Running the Simulation as an Applet

A second possibility to use the simulations created with Ejs is to run them as Java
applets from within html pages. This is a very attractive possibility because it



OSP Physics Style September 6, 2006 2:15 p.m. manual page 384

384 Chapter 17 Easy Java Simulations

opens the world for distributing simulations over the Web (see also the note about
the Java Web Start technology below).

This possibility is also taken care of by Easy Java Simulations. Every time you
run a simulation from Ejs, it also generates the html pages required to wrap the
simulation in form of an applet. More precisely, it will create a complete set of
html pages, one for each of the introduction pages (those in the introduction panel
of Ejs) and one that contains the simulation as an applet. It finally creates a master
html file that structures all the others using a simple set of frames.

All these html files are easily identified because they begin with the same name
as your original simulation file. In particular, the name of the master file is the
same as that of the simulation file. In our case, PendulumBasic.html. If you load
this file in a Java-enabled browser, you will see something like Figure 17.14.

FIGURE 17.14 The set of html pages created for our simulation.

Notice that the frame on the left displays a table of contents that includes the
introduction page that we created for our simulation (which is also shown in the
right frame) and a second link for the simulation itself. If we click on this link,
the frame to the right will change to display a html page with the simulation
embedded as an applet. See Figure 17.15. (The dialog window with the time plots
is displayed separately. We don’t reproduce it here.)

Notice, finally, that the html page that includes the simulation also displays a
set of buttons that can be used to control the simulation using JavaScript. 6

6JavaScript is a scripting language that can be used in html pages for simple programming tasks. The
use of JavaScript to access methods of simulations created with Ejs is described in the Ejs manual.



OSP Physics Style September 6, 2006 2:15 p.m. manual page 385

17.4 Running a Simulation 385

FIGURE 17.15 The simulation running as an applet.

Simulations created with Ejs require Java 2 to run. Thus, your browser will
need to have a recent plug-in installed to display them properly. We recommend
the Java plug-in version 1.5.0 04.

Distributing a Simulation

As we said before, simulations created with Easy Java Simulations are indepen-
dent of it once generated. However, the simulation will need to use a set of li-
brary files that include all the compiled OSP classes that provide the background
functionality for your simulation, from numerical methods to the visualization
elements. This library can be freely distributed and is contained in the library
subdirectory of the Simulations directory. Finally, if you designed your simula-
tion to use any additional file, such as a GIF image or sound file, you will need to
distribute this too along with the simulation.

With this said, the distribution process is quite simple. You just need to copy
the required files and the library directory to the distribution media or Web
server. Simulations created with Ejs can be distributed using any of the following
ways:

Web server Just copy the jar, html, and auxiliary files for the simulation in a suit-



OSP Physics Style September 6, 2006 2:15 p.m. manual page 386

386 Chapter 17 Easy Java Simulations

able directory of your Web server. Finally, copy the library directory into
the same directory as your simulation on the Web server. Recall that your
users will need to have a Java 2 plug-in enabled web browser to properly
display the simulation.

CD-ROM This procedure is similar to the previous one. Just copy the jar, html,
and auxiliary files, and the library directory into your distribution media.
Your users will need to have the JRE installed to run your simulation.

Easy Java Simulations is compatible with Launcher (see Chapter 15) and
the Ejs’ installation includes a copy of LaunchBuilder that will scan your
Simulations directory and will automatically generate the XML file that
you need to run your simulations using Launcher. You can then distribute
this XML file along with your simulation files, so that your users can use
Launcher to run them.

Java Web Start This is a technology created by Sun to help deliver Java appli-
cations from a Web server. The programs are downloaded from a server
at a single mouse click, and they install automatically and run as indepen-
dent applications. Easy Java Simulations is prepared to help you deliver
your simulations using this technology, and it can automatically generate
a Java Web Start jnlp file for your simulation. Details are provided in the
manual. Your users will need to have the JRE installed, which includes
Java Web Start. Finally, your server will need to report a MIME type of
application/x-java-jnlp-file for any file with the extension jnlp.

Together with Ejs A final possibility that is worth considering is that of distribut-
ing your simulation files together with Ejs. That is, asking your users to run
the simulations using Ejs itself. This requires your users to learn how to
use Ejs, if only basically to load and run the simulations. But it has, in our
opinion, the enormous advantage that your users can not only run the final
simulation, but also inspect it in detail and learn how you actually simulated
a given phenomenon. This possibility also offers a simple way for students
to begin programming to simulate physical phenomena, which we find of
great pedagogical value.

17.5 MODIFYING A SIMULATION

If you read up to this point, you should already have a general impression on
how Easy Java Simulations works, how it can be used to create a simulation, and
how to run and distribute the simulations you create with it. In this section we
will modify the simulation of the simple pendulum to include new features. This
will further illustrate the operating procedures required to work with the different
panels of Ejs.

In particular,



OSP Physics Style September 6, 2006 2:15 p.m. manual page 387

17.5 Modifying a Simulation 387

1. We will modify the model to add friction and an external driving force. The
resulting second-order differential equation is:

d2θ

dt2
= −g

l
sin(θ)− b

m

dθ

dt
+

1
ml

fe(t), (17.8)

where b is the coefficient of dynamic friction, m is the mass of the pendulum,
and fe(t) is a time-dependent external driving force. We will use, in particular, a
sinusoidal driving force of the form fe(t) = A sin(Ft), where A and F are the
amplitude and frequency of this force, respectively.

2. We will modify the view so that it displays a phase-space diagram of the
system, that is, a plot of angular position versus angular velocity.

3. We will modify both the model and the view to compute and plot the po-
tential and kinetic energies of the system and their sum.

4. We will show how to modify the introduction pages to update the descrip-
tion of the simulation.

Modifying the Model

We need to revisit the different subpanels for the model and make the neccessary
changes to each of them.

Adding New Variables
The introduction of friction and an external driving force requires adding new
variables to the model. We do this by creating a second table of variables. Al-
though we could add the new variables to the existing table, it is sometimes prefer-
able, for clarity, to organize the variables into separate tables. For this, we select
the Variables subpanel of the Model panel of Ejs and right-click on the upper
tab of the existing page. A popup menu will appear as shown in Figure 17.16.

From this menu, we select the Add a new page option (the one highlighted
in the figure), and Ejs will create a page with an empty table of variables. (Be-
fore creating it, though, Ejs will ask you for the name of this new page. You can
choose, for instance, Damping, forcing, and energy.)

In this new table we can type all the new variables that help us extend the
model in the prescribed way. The mechanism to add a variable is simple. We just
need to type a name for the variable in the column Name, select one of the possible
types in the Type column, and, optionally, provide an initial value in the Value
column. (The column labeled Dimension is used to declare arrays, and we won’t
use it for this model.)

Double-click a cell in the table in order to edit that cell. Use the tab key or ar-
row keys to move from cell to cell. Ejs will automatically add rows as needed. In
this way, create new variables of type double called b, amplitude, frequency,
potentialEnergy, kineticEnergy, and totalEnergy. Assign the first three
variables the initial values of 0.1, 0.0, and 2.0, respectively. The energy vari-
ables will be initialized as result of the evaluation of constraints. The final new



OSP Physics Style September 6, 2006 2:15 p.m. manual page 388

388 Chapter 17 Easy Java Simulations

FIGURE 17.16 The popup menu for a page of variables.

table of variables is displayed in Figure 17.17. Note that Ejs will add an empty
row to the end of the table. This can be deleted by right-clicking on the row and
selecting Remove this variable.

FIGURE 17.17 The new table of variables for our simulation.



OSP Physics Style September 6, 2006 2:15 p.m. manual page 389

17.5 Modifying a Simulation 389

Modifying the Evolution
We need to edit the differential equations for the system to add the new forces.
For this, go to the Evolution subpanel and edit the right-hand side of the second
differential equation so that it reads:

-g/l * Math.sin(theta) - b*omega/m + force(t)/(m*l)

The result is shown in Figure 17.18. Notice that we are using in this expression
the method force(t) that is not yet defined. We will need to create it as a user-
defined method, when we get to the Custom subpanel.

FIGURE 17.18 The edited differential equations.

Computing the Energy
Select the Constraints subpanel and follow a procedure similar to what we did
for the table of variables to create a second page of constraints. Call the new page
Energies and, in the blank editor that appears, type the following code:

potentialEnergy = m*g*(y+l);
kineticEnergy = 0.5*m*(vx*vx+vy*vy);
totalEnergy = potentialEnergy + kineticEnergy;

(This sets the potential energy to zero when the pendulum is hanging straight
down.) The reasons to compute the energies in a page of constraints (instead of in
the evolution) are the same as those for the computation of the cartesian magni-
tudes explained in Section 17.3. Any expression that we specify as constraints will



OSP Physics Style September 6, 2006 2:15 p.m. manual page 390

390 Chapter 17 Easy Java Simulations

be evaluated every time the state of the system changes. Thus, the corresponding
relationships (the value of the energy variables) are always kept up to date.

Coding the external force
To finish our changes to the model, we need to specify the expression for the
external force. We do this using a page of Custom code. Move to this subpanel
and click in the empty work area to create a new page called External force.
The new page that appears looks very much like the other editors of code that we
have used previously. But there is an important difference.

Since custom code is not automatically used by Ejs, the code we write here is
not wrapped into an internal Java method, but must be explicitly defined as a valid
Java method (and later invoked in your code). For this reason, type in the editor
exactly the following:

public double force (double time) {
return amplitude * Math.sin(frequency*time);

}

This correctly defines the custom method, and concludes our changes to the
model.

Modifying the View

Let us start the changes to the view of the simulation by including the phase-space
graph of angular velocity versus angular position. For this, go to the View panel
and, from the right-hand side collection of elements offered by Ejs, click on the
icon for a PlottingPanel, .

When you click on it, the icon will be highlighted, and the cursor will change
to a magic wand, . With this wand, go to the left-hand side frame of the view,
and, in the tree of elements, click on the element called Dialog. You are then
asking Ejs to create a new plotting panel as child of the Dialog window. This is
the simple mechanism used to add new elements to the view of the simulation.
Figure 17.19 illustrates this action.

When you do this (and after providing a name for the new element), a new
plotting panel will appear in the dialog window, sharing the available space with
the previous plotting panel. Because the Dialog window is too small to host
both panels, we need to enlarge it. Get rid of the magic wand by clicking on any
blank area of the left frame. Double-click the Dialog element and set its Size
property to 372,600. You can also edit the properties of the new plotting panel
to customize its title and axis labels by double-clicking on the new plotting panel
element that you created.

Now, let’s add a Trace element to the new plotting panel. A trace is an
element that can display a graph consisting of a sequence of points. Follow the
creation process described above (again using the magic wand), name the new
element PhaseSpace, and edit the table of properties so that it looks like Fig-
ure 17.20. These properties simply instruct the element to add to the graph a new



OSP Physics Style September 6, 2006 2:15 p.m. manual page 391

17.5 Modifying a Simulation 391

FIGURE 17.19 Adding a new plotting panel element to the Dialog window.

point (θ, ω) after each evolution step, displaying only the last 300 added points,
and connecting them with a blue line.

FIGURE 17.20 Properties for the PhaseSpace trace element.

The changes we did so far illustrate very well how to add and customize new
elements to the view. It is as simple as it looks. Just use the magic wand to add
new elements, and edit their properties to match your needs. In most cases, you
will use some of the variables of the model for the properties of the view element.
The connection between model and view is then automatically handled by Easy
Java Simulations.



OSP Physics Style September 6, 2006 2:15 p.m. manual page 392

392 Chapter 17 Easy Java Simulations

If we now run the simulation, we would obtain something like Figure 17.21.

FIGURE 17.21 The simulation displaying both time and phase space plots.

We can now proceed similarly to add time plots of the energies of the system.
We leave it to you as an exercise to create a third plotting panel as a child of the
Dialog window and three traces (with different colors) in this panel that will plot
the potential, kinetic and total energies of the system.

We will end the changes to the view by adding new fields for the user to vi-
sualize and edit the values of the variables b, amplitude and frequency. Click
on the icon for view elements of type NumberField, , and add three of these
to the view element called Parameters. Give the three fields the same name as
the corresponding variables, that is, b, amplitude, and frequency. (Names of
elements must be unique in the view, but they don’t clash with the name of model
variables.)

Parameters is a basic Swing 7 panel that has been configured (using its
Layout property) to display its children using a grid with one single row. When
we add the new three fields, the six children of the panel will look pretty small. To
solve this, change the Layout property of Parameters to grid:2,3. This will
organize the children in two rows of three elements each.
7Swing is the standard Java library for graphical components such as panels, buttons, and labels.



OSP Physics Style September 6, 2006 2:15 p.m. manual page 393

17.5 Modifying a Simulation 393

Now, we need to edit the table of properties of each of the field elements so that
they display the corresponding variables. We show how to do this for the first ele-
ment. Double-click the element b and edit its properties as shown in Figure 17.22.

FIGURE 17.22 Properties for the b field element.

The association of the property Variable with the variable b of the model
tells the element that the value displayed or edited in this field is that of b.

To facilitate the association of properties with variables of the model, you can
use the icon that appears to the right of the text field for the corresponding
property. If you click on this icon, a list of all the variables of the model
that can be associated to this property will be offered to you. You can then
comfortably select the one you want with the mouse.
Also, to help edit some of the technical properties (such as layouts, colors,
and fonts, for instance), Ejs offers dedicated editors that can be accessed
clicking on the icon , when shown.

The property called Format, to which we assigned the value b = 0.00, has
a special meaning. It doesn’t indicate that b should take the value of 0, but is
interpreted by the element as an instruction to display the value of b with the
prefix “b = ” and with two decimal digits.

This completes our changes to the view.

Modifying the Introduction

We now want to modify the introduction to reflect the new situation. Select the
Introduction panel of Ejs and right-click on the tab of the existing page to bring
in its popup menu. From this menu, select the Edit/View this page option.
This will activate the edit mode for the displayed html page. See Figure 17.23.

HTML pages are text pages that include special instructions or tags that allow
web browsers to give a nice format to the text, as well as to include several types
of multimedia elements. The editor allows you (when in edit mode) to work in a
WYSIWYG (what you see is what you get) mode. However, if you are familiar
with html and want to work directly on the code (which, sometimes, is preferable),
you can select the option highlighted in Figure 17.23 to access directly the html
source for the page.



OSP Physics Style September 6, 2006 2:15 p.m. manual page 394

394 Chapter 17 Easy Java Simulations

FIGURE 17.23 Edit mode of the html editor for the introduction page.

You can write as many introduction pages as you want. As we saw earlier, each
of the pages will turn into a link in the main html page that Ejs generates for the
simulation. To return to View mode, right-click the tab of the existing page and
select again Edit/View this page. In this way, you toggle the edit/view mode.

An Improved Laboratory

Our new simulation is finished. We need now to save it to disk. Because we don’t
want to loose our original simulation, click on the Save As icon of Ejs’s taskbar,

and a file dialog will allow you to save the simulation to a new file.
This simulation allows you to explore the behavior of a simple pendulum play-

ing with different possible values of the parameters. Running the simulation can
produce situations such as that displayed in Figure 17.1, at the beginning of this
Chapter.

You will find the complete improved simulation in the ospguide subdirectory
of your Simulations directory with the name PendulumComplete.xml.

17.6 A GLOBAL VISION

We end this chapter with an overview of what we did. We learned that Easy Java
Simulations is an authoring tool that provides a simplified way to design and build
complete interactive simulations in Java. For this, it structures a simulation into
three main parts, and provides, for each of these parts, a specialized editor that
helps you implement them using high-level access to many of the OSP classes



OSP Physics Style September 6, 2006 2:15 p.m. manual page 395

17.6 A global vision 395

and utilities.
To investigate in more detail how each of these editors work, we loaded an

existing simulation and inspected all of the panels and subpanels of Ejs in turn.
This helped us understand how the different parts of the simulation are specified
and how all the pieces fit together.

We also learned how to run and distribute the simulation either using physical
media or through the Internet. Finally, we modified the simulation in order to learn
some of the operating procedures of Easy Java Simulations.

The three parts of a simulation are the introduction, the model and the view.
Each of these parts has its function in the simulation and its own panel in Ejs’
interface, each with its own look and feel.

The introduction offers an editor for the html pages required to create the mul-
timedia narrative that introduces the simulation. This editor allows us to edit this
narrative, either working in WYSIWYG mode or writing directly the html code.

The model is the engine of the simulation and is created using a sequence of
subpanels where we specify the different parts of it: definition of variables, ini-
tialization, evolution of the system, constraints (or relationships among variables)
and custom methods. Each panel provides editing tools that facilitate the job of
creation (including sophisticated tasks such as solving differential equations and
treatment of events).

Finally, the view contains a set of predefined elements, based on Swing com-
ponents and OSP graphics classes, that can be used as individual building blocks
to construct a structure in form of a tree for the interface of our simulation. These
elements, that can be added to a view through a simple procedure of click and
create (our magic wand), have in turn a set of properties that indicate how each
element looks and behaves. These properties, when associated to variables from
the model (or Java expressions that use them), turn the simulation into a true dy-
namic and interactive visualization of the phenomenon under study.

And that’s it! Though the chapter is long because we accompanied the de-
scription with details and instructions, the process can be summarized in the few
paragraphs above. Obviously, learning to manipulate the interface of Easy Java
Simulations with fluency requires a bit of practice, as well as the familiarization
with all the possibilities that exist. In particular, with respect to the creation of the
view, you’ll need to learn the many types of elements offered and what each of
them can do for you.

If you want to know more about Easy Java Simulations or want to see more
examples of simulations created with Ejs, you are cordially invited to read
the manual found in the companion CDROM and to visit Ejs’s home page at
http://fem.um.es/Ejs.


